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ABSTRACT

As an extension of the main result of Rathee et al. (2022), we establish a fixed point theorem in the framework of
convex -metric spaces for Chatterjea contraction. Also, the fixed point is approximated by Kransnoselkij iterative
procedure. We finally employ these findings to solve Cauchy problem.
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INTRODUCTION AND PRELIMINARIES

The most useful and widely applied fixed point theorem
in the field of fixed point theory ensuring the existence
of fixed point for any contraction defined on complete
metric spaces was proved by Stefan Banach[5] in 1922.
In the literature, this result is also known with the name
of Banach contraction principle. By introducing the
of Chatterjea 1972, a
set out of this principle by

notion contraction in
generalization was
Chatterjea [6]. In 1989, the notion of b-metric spaces
was introduced by Bakhtin[4] in lieu to extend this
contraction principle. For more detail about this space
one can refer to [8],[3], [1], [10], [2]. Chen et al. [7]
introduced the concept of convex b-metric spaces in the
recent years by using the concept of convex structure

defined by Takahashi[13] in 1970.

Definition 1: “Let U # ¢ and s = 1 (a real number). A
mapping §: 0 X U - [0, ) is said to be a b-metric if
the following holds for every @,¢,n € U

L @59 =0iffe=g

2. pp(09) = @n(s0)

3. ppes) =slpplen + &1 9]

Further, a function 2: 0 X U X [ — U (where [ = [0,1])
is said to on U if
£r(m.2(0,6:9) <Ipp,(me) + (1 =0y, ¢) for
eachn,o,¢ €U.

have convex structure

The triplet (U, §5, £2) is called a convex b-metric space.

Additionally, by using the Mann’s iterative algorithm,
the authors established the Banach contraction principle
in the framework of this lately introduced space, viz.
convex b-metric space. In 2022, Rathee et al. [11]
established a fixed point theorem for Chatterjea
contraction and extended this result:
Theorem 1:“Suppose I: (U, p,2) = (U, 0p,2) is a
quasi-contraction, that is, I satisfies

£, 1s) < K[y (e, 1s) + £, (s, 10)] (1)
for all g,¢ € U and some k € [0,%), where (U, p, 2) is

a complete convex b-metric space with s > 1. Let
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0n = 2(0n_1,10n_1;9n_1) be a sequence defined by
choosing an initial point g, € U with the property

£ (QO,LQO) < oo, where 0<9, ;<1 for each

1

1 K .
4 2 =

and 9,_; <*Fi— for each
4K
5 K

n € N, then [ has a fixed point in U that is unique.

1
neN. Ifﬂﬁm

In the present work, we improve this theorem by
enlarging the range of k € [0, %). Furthermore, the fixed

point is computed by means of Kransnoselkij iteration.
Moreover, some examples are presented to prove the
universality of the proven results over Theorem 1 as
well as over the similar results existing in the literature.
As an application, we arrive at the solution for the

Cauchy problem.

MAIN RESULT

We start this section with the following lemma that is
required in the sequel to assure the existence and

approximation of fixed point.

Lemma 1: Let [: U — U be a self mapping defined on

(U, $p), a complete b-metric space, such that for all

0,6 €Uandk € [0, %), it satisfies
#ro,1¢) < K[y (e, 1s) + £, (s 10)] ~(2)

Ifk < lz, then [ has a unique fixed point if and only if /
kK<g e L

has  approximate fixed
inf{gy(e,10); ¢ €U} = 0.

point  property, i.e.

Proof. Firstly, assume that a unique fixed point of /, say

o, exists, i.e., [g =0. Then,

#r(e.10) =0,

inf{p(e.10); ¢ € U} = 0.

Thus, I exhibits approximate fixed point property.

Conversely, assume that [ exhibits approximate fixed
point property, i.e. inf{g,(e,10); ¢ € U} = 0. This
indicates the existence of (0,)nen, @ sequence in U

satisfying limn_,oogb(gn,ign) =0 and by using (2)

and triangle inequality for all m,n € U,

#pUon Iom) < K[Pp(0n Iom) + b (Qm, 10n)]
< K[s$p(Qn Ion) + 25010, 10m)

+50p(@m Lom)] (1 — 2k5)0p (I0n, Iom) <
ks[9p(Qn 10n) + #pU0m, 0m)]

Now, since limy 0§y (Qn 10n) =0 and k < siz, we
obtain a Cauchy sequence (/0,)nen as n — oo. Also,

there exists an element ¢ € U satisfying lim, .10, =

o as the space (U, Qb) is complete. Again using triangle

inequality
#p(en, 0) < s[op(en,10n) + £pUen, 0)]-
Taking limit as n — oo, we get
lim gy (en, @) = 02 = o
Also, consider
#pUon 10) < k[0p(n, 10) + £b (0, 10n)].
Now taking limit as n — oo,
1
S®(e10) = k[spp(e.10) + 0]
= Ks§p(0,10)
#1(0.10) < ks*pp(0,10)
(1 —xs*)pp(e,10) <0
Since k < Siz, re.,1— ESZ <1, we get
Py(e.10) =0lg =¢
and @ € U. Thus [ has a fixed point in U.

If possible, now consider two fixed points of I, say o
and ¢, exist and thus (g, ¢) # 0. By using inequality
(2), we get

©s (e.5) = 9» (1o 15)
< kl@p(e.1s) + $p (s, 10)]

< 2k$p(0,6)
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that is a contradiction as x € [O,%). (1- ?CS)@b (Iﬂg, JA+2 ) < k(s + g (Q, 19)
#n(0,¢) =0 and thus g = ¢, i.e. the fixed point is _(s + )
= == = Pule H70) ==——p, (0. 10)
unique.

eorem 2: Let [: U — U be a self mapping defined on = C8pl0, 1L
Th 2: Letl b If mapping defined c¥n(0,10) )
(U,#p,12), a complete convex b-metric space with K(s+1)

= where § =t
parameter s = 2 such that for all 9, €U and x € o
[0,%), it satisfies We let inf{g (g,ig); Q€ U} = A. We need to prove

that this A = 0. For this, let {g,,} be a sequence such
- i
i (ig’ iﬁ) =i [Eb (g’ iﬁ) +$p (E’ ig)] (3 that limy, 00 p (@n, 100) = A, i€, by (4), we have, for

Then, { has approximate fixed point property. every n € N and some A(n) € N,

Proof. For every ¢ € U, we have P Qﬂfmgﬂ,ﬁ(m”gﬂ) = ¢p(0n L0n)- ..(5)
#p({"o,i"0) = k[p, ("0, ["0) Now, (U,4,,0) being a complete convex b-metric
+, (1" o, "1 0)] space, defining n,, = Q(ii(m”gn,ii(m”gn,ﬁ) leads

to a well defined n,, belonging to U, where we can
= xks[@,(I" 1o, 1"0) + @5 (1", 1" " 0)] -

(1 —xs)p, (I 10, I"0) < ks, (1" ¢, 1"0)

1
choose ¥ € (0,1) such that 9 < 2% and then we have,

£ (1 1) = 095 (1277 0, “?n)
+ (1= 0)gy (1229, I,

KE
P9 IM0) = TE— @ (", I"0)
SN G )
- T = k09, (127 g, 1)
28 E(l - ﬁ)[gb Qi(n)-'—lgn!{nn)
1 gb (En! ii(ﬂ) i 1gn)]

. 1
since ¢ << —. Thus the sequence (£, Q“”g,flg))ne,\,

is non-increasing and for 4 € N,

oy (12419, 149) < o, (129,14 %) + 95 (1 X 429,)]
S & &b@zgjig) = gh@glg) = Eﬁ [Sgb Qitmgnjﬂn) + Sgb (En;iﬁn) +
Now, consider +8» (ﬂwiimjﬂgn)]
s (2o 127%) <x|@, (1510, 147%0) + (1= D)5 (2™ 20 10)
o, (1210, 129)| 590 (s 112) + 93 (1 T2 20,)]
<k [Eb @,1 Q) + @ (fi—lg, 1£+ZQ] < k0[50, (12 0, 1A 19,y + 59 (s 1)
_ A A +2
K[ (0,10) + s{@y (12 1o, I29) T5(1 = gy UH0 0 5™ 0n)
9, (120,122 ))] (1= ) FH™ 2y, A 0]

z% % g A+l Arm+2
< (s + 1)@ (g 19) + K5y (g, 12'29) O
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+580b (M, 111n) + 90 (1AM 0y, [AM+20,)]
< K9[s96p(Qn, 10n) + (1 — )b (0n, 107)
+582b (M, 1) + (1 = 9)Pp (00, 100)]
+r(1 =9)[s(1 =)@y (en 1n)
+505 M, 11n) + 981 (Qn, 10n)]- -.-(6)
Suppose limy o082 (1, 111n) = 8.

We notice that § is finite, and also, 4 < § is true. Next,
we claim that § = 0 which shall prove that A = 0.

Taking limsup as n — oo on both sides of inequality
(6)and using A < §

8 < kI[s98 +s(1 —9)pd +s§ + (1 —I9)J]
+r(1 = 9)[s(1 = I9)§ + 5§ + 4]
= k[2s92 + s9(1 —9)p + 29(1 = 9)
+2s(1 —s)]d

= ks[(p — 2)0(1 - 9) + 28 + kO(1 — 9)8

< k[2s + 29(1 —9)]94.
If possible, suppose that § > 0. Then, by inequality (6),
we get

1 <k[25s+29(1—19)]

< 2sk + 2KV

Y= )
L3

1SK
2 °&

which is a contradiction since 9 <

Thus, [ has approximate fixed point property.
Lemma 2: Let (U, p, 2) be a convex b-metric space.
Define self-mappings [: 0 — U and 13: U - U by
Lyo =020 10;9),0 €T.
Then, for any 9 € [0,1),

Fix(I) = Fix(ly).

Proof. By definition,
Ly =90 + (1 =9)le.
If9 = 0, then
Lo=1oVo€D
Le,ly=1
Fix(I) = Fix(ly).
Now assume that 9 € (0,1) and let a fixed point of I,
say g*, exists, i.e., g* = [g* and therefore,
#p(e" Lse") = pp(e", 2(¢" 107 9))
<9pp(e"0") + (1 —0)pp(e"1e") =0

Q" =Ly’

i.e., 0" is a fixed point of Iy.

Conversely, presume that ¢* is a fixed point of Iy, i.e.,

#p(e" 1ye") = 0, then
#pe"2(0% 10%9)) =0
9gp(%,0") + (1 —9)py(e",10") = 0

(1-9)py(e" 10" = 0.

(6)

Since ¥ # 1, o* is a fixed point of I.

Hence, the proof.

The following result is an extension of Chatterjea fixed
point theorem in the case of Convex b-metric spaces by
Rathee et al. [11]

Theorem 3: Let [: U — U be a self mapping defined on

(U, 1, 12), a complete convex b-metric space with

parameter s = 2 such that for all 0,¢ €U and k €

[0, %) it satisfies
#ro,I¢) < k[py(0,10) + £ (S, 15)] (1)
If kK < =, then

1
N

1. A fixed point of I, say g, exists that is unique.
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2. The sequence (Qn)neny converges to o for any

0o € U that is obtained from the iterative procedure

On+1 = Q(gnrign;ﬁ); n = 0.

3. The error estimate

i

1
S8 @nii-1,0) < TE@: (@n) @n-1)

holds forn =1,2,---; i =1,2,---.
Proof.
1. Lemma 1 and Theorem 2 concludes the proof.

2. We observe that 9,1 = 2(0,, lon; 9), i.c.

Taking Q0 =20n and ¢ = On-1 in (7)
#5(@n+1,0n) < K[P5(0n, 0n) + #5(Qn-1,0n+1)]

< KkS[$p(@n-1,0n) + £b(Cn, Qn+1)]

implying

KS
1— Ks Qb(gn'gn—l)

gb (gn+1rgn) <
S Esng (gnrgn—l)

= £Pb(en n-) sy, 165? = €

IA

§" 5 (01, 00) -(8)
As ¢ € [0,1), we have

Lim p,(@n+1,00) = 0.09)
Now consider the points Q and S as Onik and On;
respectively, in inequality (7).

b @n+i+1,Cn+1) < K[Pp(Qn+k On+1)

+85(Qn On+i+1)]

< KS[$b(@n+i Qnrk+1

+ ng (gn+k+1r gn+1)£b (gn: gn+1)]

This implies

(1 - 2ks)pp (gn+k+1.gn+1)
S KSPp (gn+k; Qn+k+1)
TSP (Cn+1,0n)
(1 — k)b (@ntk+1 Ont1)
< kS’ @y (gn+k,gn+k+1)
+ k5%, (n+1,0n)
(1 = )b (@n+r+1,0n+1) < §[0p(Qn+ks On+ie+1)
+8p(@n+1,0n)]

and #b (gn+k+1, gn+1)

S
< 1;_§ (26 (@n+1 Qn+ic+1)

+£b (gn+1r gn)] (10)

In inequality (7), taking limit as n — oo and using

condition (9), we get,
igrggb(gn+k+1.gn+k) = 0.

This shows that (g,),eny 1s Cauchy and owing to
completeness of the space (U, p,{2), converges to

some point, say ¢. Now, consider the inequality (8),
825 (@n+1,0n) < $"05(01,00)
b Lyen, 0n) < §" 05 (01, 00)

Now taking limit as n — oo, we get,
1
P, 9) =0

b Uss,6) = 0.
Thus, Ly¢ = ¢, and therefore ¢ is a fixed point of Iy. But
by using Lemma 2, we must have

Fix(l) = Fix(ly),
and Fix(I) = {g}, i.e. Fixed point of [ is ¢, which is
unique.

So, ¢ = ¢ and thus (@n)nen obtained from the above

iteration converges to Q.
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3. Using inequalities (10) and (8), we have

¢
Sob (Qn+m' Qn) =1-— E [@b (Qn+m 1 Qn+m)

+£b (gnr gn—l)]

< [Szn+m 180b(91'90)

1-¢
+§" 7 95 (01, 00)]
"M+ D)
1—580b (01, 0)

Now letting m — oo, we get,
1 §n
S8, 00) < 72 65(01,00) (1)

and Sob (Qn+m: Qn) [Qb (Qn+m 1 Qn+m)

|m
Mw

+£b (gn' gn—l)]

S [fm 1£b (gn—l'gn)

"y

+55(

EE™T+1)
1—5801;(971 1'Qn)

S

n gn—l)]

Now letting m — oo, we get,

%Eb (Q' Qn) = f?isgb (gn_l.gn). ...(12)

After combining (11) and (12), the following error
estimate holds

1 g

S8 @nii-1,0) < 1—_5@7 (@n@n-1)-

Hence, the result.

The following example illustrates importance of the
above theorem.

Example 1: Let the set of non-negative real numbers be
U=R; and p,(0,6)=le—sl>+lo—g| for all
0,6 € U. Here, we perceive that

1. pp(e5) =0 forall g¢ € U;
2. pr@9)=0<=0=g;
3. 90(@5) = £5(5,0):

4. o5 (e5)<4[ws(en) + 95 (n5)ln e

as 25 (0.5)

=le—¢l’+1e—gdl

=le-n+a-9f +ie-n+a-9l
<4lle—nD*+In—¢®I+1le—nl+In—gdl
<4fle—nD*+le—nll+4[n—s* +In—gl]
= 4[pp(2,n) + £, 9]

We define the convex structure 2: 0 X U X E} - U as

2(0,5:9) = gTJrS, for any ¢,¢ € U and J € [0,1]. As a
consequence,
e+ 2+s
P20 6N =N —=5= +n—=5=

3

(In el+5 In—cl)
(In ol +5 In—cl)

1 3 1 3
34[§Ig—gl tgln—gl ]

(In ol +5 In—cl)

= Zlin—oF +n—ell+5lln — s + In — ¢l
=9[n—elP+In—ell+ A -Nln—gI®

+In —¢l]
=9y 0) + (1 =)@y (1, 9)-

Thus, for s > 4, (U, gb,g) is a convex b-metric space .

Let the mapping I: U — U be defined as
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0 1 1
I(@=1{f7.,e€4=1[01) 200 '2€ 2 =[1,00). =178 10) < 0.

17
The following cases exist: Ifo < 208 then

1. Ifboth g,¢ € A, then the inequality (7) holds. 1
o #re 1) — 17 [#5(0,1¢) + 5 (5, 10)]
2. Ifp € Aand ¢ € X, then

1[1 /17 17
1 =—|=zl5=—-¢) t|l5=—¢
#re19) — - [95 (0, 16) + P (5, L0)] 17[17%\20¢ = 20g =
1 1
= |ite — 16 + l1e - 11| - 5 12 (e I9) ~ 1712600 19) + 95 (5, 10)]
=2 = = 17 &b =
+05, (5, 10)] _1fin Vo
. A R
[g & +‘g 1” 1[50(910
=175 504 17 on~ll T 77 Wb \E L5 1
17 20g| " |17 20¢|| 17 L [2o(@19) + 2p(5.[0)]
+85(5,10)] 171 3
" <5 |ia(s-e) +(c-o)
1[1 173_}_’ 17] 17[17 ]
=—|=zle 52 t1e—5n 1
17172 = 20¢] |2 20¢ ~ o @02 19) + 9 (s, 10)]
1
- [pp(0.19) + £5(5 10)]- 1 2y° 0
17 & &) T EIS 2R —e== =
<17 (5 17) +(5 17)]

Ifo > i, then
20¢

1
~ 7 05 19) + £ (5, 10)]

1
#pIe.19) — 7= [#6 (0. 19) + 95 (. I0)] 1 1
= 17806 10) — 75 195(0.I9) + 91 (5, 10)]

1[1 < 17>3+< 17)] :

17[172\=  20¢ = 20g =781 < 0.

1
—ﬁ[gb(gyig) + 95 (5, 10)] Thus, we have

. o\ - P10, I5) < =[Py (0. 16) + Pp(5,10)]  ...(13)
<—=lle-=] +|lo—=—=

17 <§ 20£> (9 205>] 3. IfgeZandg €A,

1
= 9s(@.15) +©1(5 10)] £oUe.19) < 7[00 (2.15) + 20 (s 12)]  --(19)

1 1\ 1 4, Ifbothg,£€2'= [1,00)
S17 (—_2_0c> +<9_2_0c>] 1

- - $re.19) — 7= [#6(0. 19) + 95 (5. 10)]

1

17 186 19) + Pu(s.10)] 1 1 3+ 1 1
~|1200  20¢ 200  20g

1 1
= 1786 19) = 75196 (0. 19) + P (5, 10)]
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1
——[sob(e,lc)ﬂob(c,le)

111

~20/202

1

Q

- = —H - = [#5(e 1)
+Qb(g,£g)]-

If ¢ > o, then

1
$rleI9) — 171952, 19) + 95 (6. 10)]

_1f1 1\’ 1 1
< W(g—§> +<g—§> AT

+85 (5. 10)]

1 1 3+ 1
202\2 " 20¢ €7 20¢

1
— 71202 19) + 1 (5 10)]

1\° 1 1
s e s

+85 (5. 10)]

<1
20

<1
20

1
sob(g, I9) = 17186 (@.19) + 95 (5, 10)]

- 20
<=0 (2.16) ~ 75 @5 (2.1) + 2 (c.Lo)]

1

If o > ¢, then

1
#vle I9) = 771950 19) + Pu (5. 10)]

_1f1 1\° 1 1
=350 ﬁ(ﬁ‘é) +<£—§> — 17 [#p(I9)

+85 (5. 10)]

1 1\’ 1
202\ 200 ¢ 200

1
—17 @0 (@ 19) + 1 (5 10)]

<1
20

1
— 171219

1 1 3+ 1
<20|\¢ 200 £7 200

+1(5,10)]

1 1
<5080 10) — 17 [#6(0.I9) + 95 (. 10)]

1 1
< 1786(510) — 15 [#p(0.I9) + P (5, 10)]

1
- — Io) <
17 #re 1) =0,
which infers that for all p,¢ € U

1

#rloIg) < ﬁ (250, I5) + 01 (5, 10)].

Therefore, for k = — -<= [ satisfies the inequality.
Generate the sequence iteration

0n = 2(@n-1,10n-1;9) With 0 <9 =~ < 1.
There are two possibilities for go:

1. Ifgo € A, then

Qo
Igg =17
11 9
01 =300+ 3720 = g7) 0

n

1 1 9
_n ZQn 1t5 2 Qn 1= (17> gO-
Certainly, 0, » 0 asn — oo.

2. Ifpy € 2, then

1 1
07 200

11 111
01758075280 = 5L T 5 200,
01 1 21
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If o € 4, as n = 0,0, = 0 as in the previous case. If

2 1,1 1 _21
then ==-+-.-5=—
2 2 g?

gl €2, 01 40

Continuing in

comparable manner, we presume that p,_; €X

yielding
On _1+1 1 21
On-1 2 2 Q121—1 40
and

Qo Qo 01 On-1

gn 01 02 On _ (21>n
40/’
and hence limn_mgn =0.

Now, if g € A, consider

gﬁb(gnrlgn) = Ign _Lgn|3 + |gn - Lgnl

9n 9n+1 3
&) - () e

9n 9n+1
+‘(ﬁ) o-(3) @
() (&) e+ () (&)
“\17) \17) & 7\17) \17)8>

Clearly,
Lim 9, (en, o) = 0.(15)
Also, ifgo € X, then
5 (enlen)
= |on — Ionl® + lon — Ionl < lonl® + lenl
21\" 21\"
:’(E) Qo +‘(@) o
21" 21"
=(35) 2+ (5) o

Clearly,

3

Lim p,(en,I0n) = 0. -..(16)

Thus, from equations 15 and 16, we get

inf{$p(e,10); ¢ € U} = 0.

Remark 1: If o =0 and g=% , then lp =0 and
1 o
I¢ = % resulting in

#ro,15) = K[y (0. 1) + 95 (s, 10)]

G+ @)=l v @] o

1
and Kk = — >
==

which is true for all k 2i<
- 41 s(s+1)

— - and therefore Theorem 3 is an extension of
s2(s2+1)
Chatterjea fixed point theorem proved by Rathee et
al.[11]

APPLICATION TO CAUCHY PROBLEM

Consider space U = C[4,¢] = {e(@); ¢:[§,{] = R}
and the Cauchy problem

di(;) = ¢ (@, 5@)), with ¢(@0) = 0.} -.(18)
where  ¢(@,¢(@)):[8,§{] xR >R, ¢(@) are

continuous functions in [§, ¢] and ¢(w) is differentiable
in [§,&]. Here, w, is a point in the interior of the

interval [§, §].

This Cauchy Problem 18 is identical to the following

integral equation:

s@) = 6o + [, P4 (M) dA.

Define ,,: 0 X U — [0, ©) by

...(19)

#5(2,9) = Supwe(s6 (@) —§(@)* Vo, €T
Define 2: U x U x [0,1] » U as
2(e,6;9) =de+ (1 —V)g.

Additionally, consider a self-mapping I: U = U defined

as
5@ =50+ | P o) dAv o Ae s8]

Then, existence of unique fixed point of mapping [
implies the existence and uniqueness of solution of the
integral equation 19 and hence, the Cauchy Problem 18.
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Lemma 3: Ler U= C[4,¢] = {e(@); ¢:[§,§] = R}
and define §1,: 0 X U - [0, ) by

#5(0,6) = Supwe(s6(@(@) — §(@)* Vo, €T
Define the convex structure 2: 0 X U X [0,1] = U as
2(0,59) =90+ (1-9)Vec€ED.
Then, (U, 2p, 2) is a convex b-metric space.
Proof. We observe that
I $p(0,6) 20V €T.
2. pp(06)=0=p0=cg.
3. #p(0,9) = pr(s0)
4. 9p(0,6) = 2[pp(em) + o1, 9)] as
£(06) = suPgejs g (@(@) — ¢(@))*
= SUPgefs,6) (e (@) — (@) + n(@) — ¢(@))?
< 2{supge(s 51 (0(@) — n(@))?
+SUPges, 5] (1(@) — ¢(@))?}
=2[pp(e,n) + £r(, O]

Also, for Q(Q,g;ﬁ) =9+ (1—-9)¢VoccEU, we

have

o (1.2 (e.5:9))

= SUpge(s,5)(N(@) — 2(e(@), ¢(@); 9))*

= SUpge(s,5) (@) — (e (@) + (1 — 9)s(@)})*
< supwe[g,ﬂ(ﬁlg(w) —e(@)|+ A -9)n(@) -
s(@)?

= SUPls | [9° (@) — 2(@))*

+(1 = 92 ((®@) — (@) +29(1 — 9)n(®@)
— 0@)|In@) - s@)l]

< SUP o] [92(n(@) — o(@))?

+(1 — )2 (@) — s@))? + (1 — N){(1(@)
— @)’ + (@) — s(@))*}]
S OSUP el ] (@) — @(@))°
+(1 = 9)supgejs 5 (@) — ¢(@))*
=99, 0) + (1 =95 (1,9)
Thus, for s > 2, (U, £, 2) is convex b-metric space.
Theorem 4: Consider

1
|64, ) - (4 s ()| < [xM 2 9]

1 < i
(-0)2 ~ 52

for all w, A € [4,¢]; 0, € U and some k <
where

M(e,¢) = pp(0,15) + 25 (s, 10)}-
Then, a unique solution exists for Integral Equation 19.

Proof. Consider

Uo(@) ~ Ig(w))>?

© 2
< ( [ lowem - o s d4>
@ 1
< ( f kMg, 9| dA)

- 2
< kM(e,5) <f d4>

= kM(0,¢)(@ — @o)?

< kM(0,6)(§ — 9)°

2

implying Integral Equation 19 and hence, the Cauchy
Problem 18, has a unique solution that is unique as all
the hypothesis of Theorem 3 are satisfied.

CONCLUSION

As an extension of the elementary result of Rathee et
al.[11], we put forward a fixed point theorem that
ensures the existence of a fixed point for Chatterjea
contraction in the setting of convex b-metric spaces.
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The Kransnoselkij iterative process is used for
approximating the fixed point and the conclusions
drawn here and use these conclusions to solve Cauchy

problem.
OPEN PROBLEM

Rathee et al.[11] ensured the existence of fixed point

for Chatterjea contraction for the constant k €

[0,2;). In addition, we extended the same for
s2(s2+1)

1 1 o
KE [m,m). Is it viable to further relax the

1 1
s(s+1)’ 27"

condition for k € [
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